1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
| import argparse
import numpy as np import skimage import torch import torchvision from PIL import Image, ImageDraw, ImageFont from selectivesearch import selective_search from torchvision import transforms
from fast_rcnn import FastRCNN
def cal_iou(a, b): a_min_x, a_min_y, a_max_x, a_max_y = a b_min_x, b_min_y, b_max_x, b_max_y = b if min(a_max_y, b_max_y) < max(a_min_y, b_min_y) or min(a_max_x, b_max_x) < max(a_min_x, b_min_x): return 0 else: intersect_area = (min(a_max_y, b_max_y) - max(a_min_y, b_min_y) + 1) * \ (min(a_max_x, b_max_x) - max(a_min_x, b_min_x) + 1) union_area = (a_max_x - a_min_x + 1) * (a_max_y - a_min_y + 1) + \ (b_max_x - b_min_x + 1) * (b_max_y - b_min_y + 1) - intersect_area return intersect_area / union_area
def main(): parser = argparse.ArgumentParser('parser for testing fast-rcnn') parser.add_argument('--jpg_path', type=str, default='D:\\WritePapers\\object_detection_basics\\Datasets\\COCO2017\\val2017\\000000241326.jpg') parser.add_argument('--save_path', type=str, default='sample.png') parser.add_argument('--save_type', type=str, default='png') parser.add_argument('--model', type=str, default='./model/fast_rcnn.pkl') parser.add_argument('--num_classes', type=int, default=10) parser.add_argument('--scale', type=float, default=30.0) parser.add_argument('--sigma', type=float, default=0.8) parser.add_argument('--min_size', type=int, default=50) parser.add_argument('--cats', type=str, nargs='*', default=[ 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe']) parser.add_argument('--cuda', type=bool, default=False) args = parser.parse_args()
trained_net = torch.load(args.model, map_location = 'cpu')
model = FastRCNN(num_classes=args.num_classes) model.load_state_dict(trained_net) if args.cuda: model.cuda()
img = skimage.io.imread(args.jpg_path) h = img.shape[0] w = img.shape[1] _, ss_regions = selective_search( img, args.scale, args.sigma, args.min_size) rois = [] for region in ss_regions: rect = list(region['rect']) rect[0] = rect[0] / w rect[1] = rect[1] / h rect[2] = rect[0] + rect[2] / w rect[3] = rect[1] + rect[3] / h rois.append(rect) img = Image.fromarray(img) img_tensor = img.resize([224, 224]) transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([ 0.485, 0.456, -.406], [0.229, 0.224, 0.225])]) img_tensor = transform(img_tensor).unsqueeze(0) if args.cuda: img_tensor = img_tensor.cuda() rois = np.array(rois) roi_idx = [0] * rois.shape[0]
prob, rela_loc = model.forward(img_tensor, rois, roi_idx) prob = torch.nn.Softmax(dim=-1)(prob).cpu().detach().numpy() labels = [] max_probs = [] bboxs = [] for i in range(len(prob)): if prob[i].max() > 0.8 and np.argmax(prob[i], axis=0) != 0: labels.append(np.argmax(prob[i], axis=0)) max_probs.append(prob[i].max()) rois[i] = [int(w * rois[i][0]), int(h * rois[i][1]), int(w * rois[i][2]), int(w * rois[i][3])] bboxs.append(rois[i]) labels = np.array(labels) max_probs = np.array(max_probs) bboxs = np.array(bboxs) order = np.argsort(-max_probs) labels = labels[order] max_probs = max_probs[order] bboxs = bboxs[order]
nms_labels = [] nms_probs = [] nms_bboxs = [] del_indexes = [] for i in range(len(labels)): if i not in del_indexes: for j in range(len(labels)): if j not in del_indexes and cal_iou(bboxs[i], bboxs[j]) > 0.3: del_indexes.append(j) nms_labels.append(labels[i]) nms_probs.append(max_probs[i]) nms_bboxs.append(bboxs[i])
cat_dict = {(i + 1): args.cats[i] for i in range(len(args.cats))} cat_dict[0] = 'background' font = ImageFont.truetype('./fonts/chinese_cht.ttf', size=16) draw = ImageDraw.Draw(img) for i in range(len(nms_labels)): draw.polygon([(nms_bboxs[i][0], nms_bboxs[i][1]), (nms_bboxs[i][2], nms_bboxs[i][1]), (nms_bboxs[i][2], nms_bboxs[i][3]), (nms_bboxs[i][0], nms_bboxs[i][3])], outline=(255, 0, 0)) draw.text((nms_bboxs[i][0] + 5, nms_bboxs[i][1] + 5), '%s %.2f%%' % ( cat_dict[nms_labels[i]], 100 * max_probs[i]), fill=(255, 0, 0), font=font) img.save(args.save_path, args.save_type)
if __name__ == '__main__': main()
|